Inkjet-Printed Silver Gate Electrode and Organic Dielectric Materials for Bottom-Gate Pentacene Thin-Film Transistors

نویسندگان

  • Jinwoo Kim
  • Junhee Cho
  • Seungjun Chung
  • Jeonghun Kwak
  • Changhee Lee
  • Jang-Joo Kim
چکیده

An inkjet-printed silver electrode and a spin-coated cross-linked poly(4-vinylphenol)(PVP) dielectric layer were used as a gate electrode and a gate insulator for a bottom-gate pentacene thinlm transistor (TFT), respectively. The printing and the curing conditions of the printed silver electrode were optimized and tested on various substrates, such as glass, silicon, silicon dioxide, polyethersulfone, polyethyleneterephthalate, polyimide and polyarylate, to produce a good sheet resistance of 0.2 0.4 / and a good surface roughness of 2.38 nm in RMS value and 20.14 nm in peak-to-valley (P2V) value, which are very similar to those of conventionally-sputtered indium-tinoxide (ITO) or thermally-evaporated silver electrodes. The coated PVP layer of metal/PVP/metal devices showed a good insulation property of 10.4 nA/cm2 at 0.5 MV/cm. The PVP layer further reduced the surface roughness of the gate electrode to provide a good interface to the pentance layer. The pentacene TFT with a structure of glass/printed silver/PVP/pentacene/Au showed a good saturation region mobility of 0.13 cm2/Vs and a good on/o ratio of larger than 105, which are similar to the performance of a pentacene TFT with a conventional ITO gate electrode.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of the Characteristics of Organic Thin Film Transistors with Plasma-Polymer Gate Dielectrics

The effects of gate dielectrics material in organic thin film transistors (OTFTs) were investigated. The gate dielectrics were deposited by plasma enhanced chemical vapor deposition (PECVD) with cyclohexane and tetraethylorthosilane (TEOS) respectively used as organic and inorganic precursors. The gate dielectrics (gate insulators) were deposited as either organic plasma-polymer or organic–inor...

متن کامل

Organic Thin Film Transistors with Polyvinylpyrrolidone / Nickel Oxide Sol-Gel Derived Nanocomposite Insulator

Polyvinylpyrrolidone  /  Nickel  oxide  (PVP/NiO)  dielectrics  were fabricated  with  sol-gel  method  using  0.2  g  of  PVP  at  different working  temperatures  of  80,  150  and  200  ºC.  Structural  properties and surface morphology of the hybrid films were investigated by X- Ray  diffraction  (XRD)  and  Scanning  Electron Microscope  (SEM) respectively. Energy dispersive X-ray spec...

متن کامل

Low-Voltage Organic Thin Film Transistors with High-K Bi1.5Zn1.0nb1.5O7 Pyrochlore Gate Insulator

Thin film transistor circuits using organic semiconductors (oTFT) have received intense interest for applications requiring structural flexibility, large area coverage, low temperature processing, and low-cost [1]. Pentacene TFTs have demonstrated the highest performance among TFTs with an organic semiconductor channel. A major limitation, however, has been unusually high operating voltages (20...

متن کامل

Direct Inkjet Printing of Silver Source/Drain Electrodes on an Amorphous InGaZnO Layer for Thin-Film Transistors

Printing technologies for thin-film transistors (TFTs) have recently attracted much interest owing to their eco-friendliness, direct patterning, low cost, and roll-to-roll manufacturing processes. Lower production costs could result if electrodes fabricated by vacuum processes could be replaced by inkjet printing. However, poor interfacial contacts and/or serious diffusion between the active la...

متن کامل

Low-Voltage Organic Thin-Film Transistors with High-k Nanocomposite Gate Dielectrics for Flexible Electronics and Optothermal Sensors

The performance of organic thin-film transistors (OTFT) for flexible, low cost and disposable “plastic” electronic products advances rapidly: various organic semiconductors display hole or electron carrier mobilities that compare favorably with those of hydrogenated amorphous silicon, the inorganic counterpart for such applications as flexible displays, smart cards and radio frequency identific...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009